Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130217, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104664

RESUMO

Being considered as a valuable resource and energy carrier, extensive research is going on to efficiently extract ammonia (NH3) from anaerobic digestate. However, due to the well-known NH3 inhibition on methanogens, the total NH3 nitrogen (TAN) concentration is typically limited to 1-4 g N/L in digestate, making the NH3 extraction process energy-consumptive. Here, NH3 fermentation, specifically targeting augmented NH3 production through biological reaction, was performed in a continuous mode. With the increase of gelatin input (10 to 150 g COD/L), NH3 concentration and volumetric productivity gradually increased, reaching 12.0 g TAN-N/L and 36.0 g NH3-N/L/d, which were the highest values ever reported. The stepwise increase in NH3 exposure prompted a shift in microbial dominance towards Hathewaya (from 1 % to 68 %), a critical factor for having high NH3 tolerance. Finally, NH3 stripping results suggested that highly concentrated broth could reduce the specific energy consumption for NH3 extraction to 1/3.


Assuntos
Amônia , Nitrogênio , Fermentação , Amônia/farmacologia
2.
Chemosphere ; 339: 139766, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37562503

RESUMO

The unprecedented recent expansion in usage of paracetamol (AAP) has increased the need for suitable wastewater treatment technology. Furthermore, direct interspecies electron transfer promotion (DIET) offers simple and efficient approach for enhancing anaerobic digestion (AD). In this work, using AAP-containing domestic wastewater as feed, control AD reactor (RC) was operated, besides three DIET-promoted AD reactors (REV, RMC and REVMC, referring to electrical voltage "EV"-applied, nFe3O4-multiwall carbon nanotube (MCNT)-supplemented, and "EV applied + MCNT supplemented" reactor, respectively). Maximal treatable organic loading rates by RC, REV, RMC and REVMC were 3.9, 3.9, 7.8 and 15.6 g COD/L/d, corresponding to AAP loading rate of 26, 78, 156 and 312 µg/L/d, respectively. Methane production rate generated by RC, REV, RMC and REVMC reached 0.80 ± 0.01, 0.86 ± 0.04, 1.40 ± 0.07, and 3.01 ± 0.17 L/L/d, respectively. AAP expectedly followed hydroquinone degradation pathway, causing AD failure by acetate accumulation. However, this performance deterioration could be mitigated by DIET-promoted microbes with higher methanogenic activity and advanced electric conductivity. Economic evaluation revealed the favourability of MCNT addition over EV application, since payback periods for RC, REV, RMC and REVMC were 6.2, 7.7, 4.2 and 5.0 yr, respectively.


Assuntos
Esgotos , Águas Residuárias , Anaerobiose , Reatores Biológicos , Preparações Farmacêuticas , Metano
3.
Bioresour Technol ; 376: 128897, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36931446

RESUMO

Autogenerative high-pressure digestion has an advantage of producing CH4-rich biogas directly from the reactor. However, its continuous operation has rarely been reported, and has never been attempted in an upflow anaerobic sludge blanket reactor (UASB). Here, UASB was continuously operated at 10 g COD/L/d with increasing pressure from 1 to 8 bar. As the pressure increased, the CH4 content in the biogas increased gradually, reaching 96.7 ± 0.8% at 8 bar (309 MJ/m3 biogas). The pH was dropped from 8.2 to 7.2 with pressure increase, but COD removal efficiency was maintained > 90%. The high pressure up to 8 bar did not adversely impact the physicochemical properties of granules, which was due to the increased production of extracellular polymeric substances (EPS), particularly, tightly bound EPS (34% increase). With pressure increase, there was no changes in the microbial community and ATPase gene expression, but 41% increase in carbonic anhydrase gene expression was observed.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/química , Biocombustíveis , Anaerobiose , Reatores Biológicos
4.
Bioresour Technol ; 369: 128430, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36464001

RESUMO

Treatment of sulfate-rich wastewater with high methane recovery is a major concern due to sulfide inhibition. Here, an electrical voltage (EV) aims to enhance methanogenesis and sulfidogenesis to treat sulfate-rich wastewater. Two (control and EV-applied) reactors were operated with a gradual decrease in chemical oxygen demand (COD)/SO42- ratios (CSR). EV-applied reactor (EVR) demonstrated an increase of ∼30 % in methane production and ∼40 % in sulfate removal, compared to the control till CSR of 2.0. At CSR 1.0, the control failed, while EVR still exhibited a stable performance of 50 % COD-methane recovery. Microbial community results showed that the relative abundance of sulfate-reducing bacteria in EVR was 1.5 times higher than the control. Furthermore, higher relative abundance of dissimilatory sulfate reductase (>50 %) and Ni/Fe hydrogenase (x15) genes demonstrated an improved tolerance against H2S toxicity. This study highlights the importance of EV application by minimizing the byproduct inhibition in sulfate-rich wastewater.


Assuntos
Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Anaerobiose , Sulfatos , Reatores Biológicos , Metano
5.
Bioresour Technol ; 360: 127632, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35863601

RESUMO

Despite having high-rate methanogenic performance, up-flow anaerobic sludge blanket reactor still has challenges regarding long-start up period (3-8 months) for granulation. In this study, "electrical voltage (EV, 0.3 V) application" was attempted for facilitating granulation in the continuous operation with increased organic loading rates (0.5-11.0 kg COD/m3/d). Up to 11.0 kg COD/m3/d, EV-reactor exhibited the stable performance, while the control failed. After 49 days of operation (at 7 kg COD/m3/d), the granules collected from EV-reactor had larger diameter (2.3 vs 1.6 mm), higher settling velocity (2.6 vs 1.9 cm/s), and higher hydrophobicity (52.1 % vs 34.5 %), compared to the control. EV application also increased the specific methanogenic activity for propionate and hydrogen almost by two times. The relative abundance of Pseudomonas sp. (quorum sensing (QS)-related microbe) in EV-reactor was 17 % higher than that in the control. In addition, EV application increased the expression of QS genes significantly by 27 times.


Assuntos
Euryarchaeota , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Esgotos
6.
Environ Res ; 212(Pt D): 113494, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35660404

RESUMO

Onion skin waste (OSW) is common waste in developing countries, which can cause severe environmental pollution when not properly treated. Value-added products can be chemically extracted from OSW; however, that process is not economically feasible. Alternatively, dry anaerobic digestion (DAD) of OSW is a promising approach for both energy recovery and environment protection. The main hurdles during DAD of OSW can be the hydrolysis and acidification. In batch tests, sludge digestate (SD) rich with methanogens was co-digested with different fractions of OSW for enhancing hydrolysis and raising biogas productivity. The cumulative biogas production (CBP) was 36.6 ± 0.3 mL for sole DAD of SD (100% SD) and increased up to 281.9 ± 14.1 mL for (50% SD: 50% OSW) batch. Self-delignification of OSW took place by SD addition, where the lignin removal reached 75.3 ± 10.5% for (85% SD: 15% OSW) batch. Increasing the fraction of OSW (45% SD: 55% OSW) reduced the delignification by a value of 68.8%, where initial lignin concentration was 9.48 ± 1.6% in dry weight. Lignin breaking down resulted a high fraction of phenolic compounds (345.6 ± 58.8 mg gallic acid equivalent/g dry weight) in the fermentation medium, causing CBP drop (219.0 ± 28.5 mL). The presence of elements (K, Ca, Mg, Fe, Zn, Mn, S and P) in OSW improved the enzymatic activity, facilitated phenolic compounds degradation, shifted the metabolism towards acetate fermentation pathway, and raised biogas productivity. Acidogenesis was less affected by phenolic compounds than methanogenesis, causing higher H2 contents and lower CH4 contents, at batches with high share of OSW.


Assuntos
Biocombustíveis , Cebolas , Anaerobiose , Reatores Biológicos , Lignina , Metano , Cebolas/química , Esgotos
7.
Sci Total Environ ; 823: 153533, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35150964

RESUMO

A significant amount of CH4 is emitting from livestock manure (LM) storage tank, which is being counted according to the guidelines provided by the Intergovernmental Panel on Climate Change (IPCC). Among various parameters affecting CH4 conversion factor (MCF) of LM, temperature is known as the most influential factor. As a degree of temperature, atmospheric temperature (Ta), not the manure temperature (Tm), is used for determining the MCF. Currently, the closed-type tank is more common than open-type tank, which would cause the substantial difference between Ta and Tm, probably due to the automatic temperature rise (ATR). Here, we repeatedly observed the ATR by storing pig slurry (PS) in a pilot-scale tank (30 m3, surface/volume ratio of 1.9), and its consequent impact on the increased CH4 emissions by comparing with the results from a lab-scale tank (1 L, surface/volume ratio of 72.2) controlled at 30 °C. As storage began, the Tm increased gradually from 16 to 23 °C to above 30 °C even in winter (-5 °C < Ta < 15 °C). During 30 d of storage, the CH4 emissions of 1.3-2.5 kg CH4/ton PS (MCF 26-29%) was observed in the lab-scale tank, while the emissions was increased to 2.6-4.2 kg CH4/ton PS (MCF 40-50%) in the pilot-scale tank (Two-Tail test, |tt|<|tc|). For the first time, a detailed heat energy balance considering the waste heat from organic degradation, the heat requirement for warm up, and the heat loss by convection, was conducted, proving that the waste heat generated during storage was enough to reach above 30 °C. Cooling-down of LM at 20 °C was found to be effective for reducing CH4 emissions by 90%, which sufficiently offset the greenhouse gas emissions in power consumption for cooling. Our findings strongly suggest that more CH4 is emitting from LM storage tank than expected, and therefore, the IPCC needs to develop guidelines more accurately in determining MCF.


Assuntos
Gases de Efeito Estufa , Esterco , Animais , Temperatura Baixa , Esterco/análise , Metano/análise , Suínos , Temperatura
8.
Bioresour Technol ; 344(Pt B): 126327, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34785332

RESUMO

Electron bifurcation (EB) is the most recently found mode of energy conservation, which involves both exergonic and endergonic electron transfer reactions to minimize energy loss. Several works have been devoted on EB reactions (EBRs) in anaerobic digestion but limited in dark fermentative hydrogen production (DF). Two main electron carriers in DF are ferredoxin (Fd) and reduced nicotinamide adenine dinucleotide (NADH), complicatedly involved in EB. Here, i) the importance of EB involvement in DF, ii) all EBRs possible to present in DF, as well as iii) the limitation of previous studies that tried incorporating any of EBRs in DF metabolic model, were highlighted. In addition, the concept of using metagenomic analysis for estimating the share of each EB reaction in the metabolic model, was proposed. This review is expected to initiate a new wave for studying EB, as a tool for explaining and predicting DF products.


Assuntos
Elétrons , Ferredoxinas , Transporte de Elétrons , Fermentação , Ferredoxinas/metabolismo , Oxirredução
9.
Water Res ; 194: 116920, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609909

RESUMO

Auto-generative high pressure digestion (AHPD) and hydrogen-injecting digestion (HID) have been introduced to directly produce high CH4-content biogas from anaerobic digester. However, each approach has its own technical difficulties (pH changes), and practical issues (high cost of H2) to obtain > 90% CH4 containing biogas, particularly, from the high-strength waste like food waste (FW). To overcome this problem, in this study, AHPD and HID were integrated, which can offset each drawback but maximize its benefit. Substrate concentration of FW tested here was 200 g COD/L, the highest ever applied in AHPD and HID studies. At first, the reactor was operated by elevating the autogenerative pressure from 1 to 3, 5, and 7 bar without H2 injection. With the pressure increase, the CH4 content in the biogas gradually increased from 52.4% at 1 bar to 77.4% at 7 bar. However, a drop of CH4 production yield (MPY) was observed at 7 bar, due to the pH drop down to 6.7 by excess CO2 dissolution. At further operation, H2 injection began at 5 bar, with increasing its amount. The injection was effective to increase the CH4 content to 82.8%, 87.2%, and 90.6% at 0.09, 0.13, and 0.18 L H2/g CODFW.fed of H2 injection amount, respectively. At 0.25 L H2/g CODFW.fed, there was a further increase of CH4 content to 92.1%, but the MPY was dropped with pH increase to 8.7 with residual H2 being detected (4% in the biogas). Microbial community analysis showed the increased abundance of piezo-tolerant microbe with pressure increase, and direct interspecies electron transfer contributors after H2 injection. In conclusion, the integration of two approaches enabled to directly produce high calorific biogas (90% > CH4, 180 MJ/m3 biogas) from high-strength FW at the lowest requirement of H2 (0.18 L H2/g CODFW.fed) ever reported.


Assuntos
Biocombustíveis , Eliminação de Resíduos , Anaerobiose , Reatores Biológicos , Alimentos , Hidrogênio , Metano
10.
Water Res ; 190: 116732, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33316662

RESUMO

The inhibition of the anaerobic digestion (AD) process, caused by long chain fatty acids (LCFAs), has been considered as an important issue in the wastewater treatment sector. Proper understanding of mechanisms behind the inhibition is a must for further improvements of the AD process in the presence of LCFAs. Through analyzing recent literature, this review extensively describes the mechanism of LCFAs degradation, during AD. Further, a particular focus was directed to the key parameters which could affect such process. Besides, this review highlights the recent research efforts in mitigating LCFAs-caused inhibition, through the addition of commonly used additives such as cations and natural adsorbents. Specifically, additives such as bentonite, cation-based adsorbents, as well as zeolite and other natural adsorbents for alleviating the LCFAs-induced inhibition are discussed in detail. Further, panoramic evaluations for characteristics, various mechanisms of reaction, merits, limits, recommended doses, and preferred conditions for each of the different additives are provided. Moreover, the potential for increasing the methane production via pretreatment using those additives are discussed. Finally, we provide future horizons for the alternative materials that can be utilized, more efficiently, for both mitigating LCFAs-based inhibition and boosting methane potential in the subsequent digestion of LCFA-related wastes.


Assuntos
Reatores Biológicos , Purificação da Água , Anaerobiose , Ácidos Graxos , Metano
11.
Sci Total Environ ; 753: 142080, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-32898812

RESUMO

The use of sulfuric acid (SA) for reducing greenhouse gases (GHGs, mainly CH4) emissions in manure management encounters with problems related with safety issue and increased H2S emissions. In the present study, citric acid (CA) as an alternative to SA was assessed in the lab-scale experiment at various dosages (pH 5.0-7.0), and then confirmed in the pilot-scale tank (effective volume of 30 ton). During 35 d of pig slurry (PS) storage at 30 °C, it was found that the CA addition to initial pH down to 6.5 could lead negligible reduction, while 85-99% and 48-72% reduction of CH4 and H2S emissions were achieved at pH ≤ 6.0, respectively. The similar reduction performance was confirmed (control vs. pH 6.0) in the pilot-scale test, but, interestingly, two times higher CH4 emissions of 123.7 kg CO2 eq./ton PS was detected caused by the automatic temperature increase (≥35 °C). The pH of acidified PS did not exceed 6.5 during the whole storage period, while it was maintained 7.3-7.7 in the control. A continuous AD reactor fed with acidified PS exhibited a higher CH4 yield of 10.0 m3 CH4/ton PS, compared to the control (5.7 m3 CH4/ton PS), due to the preservation of organic matters and added CA. In overall, about 8.5 [(4.4, storage) + (4.1, biogas)] kg of CH4/ton PS was generated from raw PS and it was reduced to 7.8 [(0.7, storage) + (7.1, biogas)] kg of CH4/ton PS by CA-acidification. Despite the carbon footprint for manufacturing CA, it was calculated that GHG reduction of 107 kg CO2 eq./ton PS could be attained by CA-acidification. In terms of economic profit, it was estimated that 6.3 USD/ton PS can be gained by CA-acidification, while it was 2.4 USD/ton PS in case of control.


Assuntos
Biocombustíveis , Gases de Efeito Estufa , Animais , Ácido Cítrico , Esterco/análise , Metano/análise , Suínos
12.
J Hazard Mater ; 399: 123063, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32512282

RESUMO

Owing to the economic benefit and efficiency, H2SO4-acidification is often applied for reducing CH4 emissions during storage of pig slurry (PS). However, it encounters with several problems related with safety and the concomitant H2S emissions. To reduce the required amount of H2SO4, in this study, the storage at low temperature (20-35 °C) was applied to the mild-acidified PS (pH 6.5 and 7.0). 55.1 kg CO2 eq./ton PS of CH4 was emitted from the control (non-acidified at 35 °C), which was reduced to 14.4-40.2 kg CO2 eq./ton PS at 20-30 °C. Temperature-decrease led to the increase of the abundance of methanogens (Methanobrevibacter and Methanolobus) that can grow at low temperature and the drop of specific methanogenic activity value. To achieve 70 % CH4 reduction, 1.6 kg H2SO4/ton PS was needed in PS acidification, which was decreased to 0.5 kg H2SO4/ton PS by decreasing temperature from 35 °C to 25 °C. CH4 production potential of the PS stored at 35 °C-pH 6.5 and 25 °C-pH 7.0 was increased by 21-33 % compared to the control. The GHG reduction of 33.6-41.9 kg CO2 eq./ton PS and the profit of 6.6 USD/ton PS could be attained by applying acidification or combined storage, indicating that the temperature-decrease can be effectively combined with H2SO4-acidification.


Assuntos
Euryarchaeota , Esterco , Animais , Concentração de Íons de Hidrogênio , Metano , Suínos , Temperatura
13.
Bioresour Technol ; 306: 123186, 2020 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-32199401

RESUMO

This study investigated the effect of supplementing nano-sized magnetite (Fe3O4 NPs), multi-wall carbon nanotubes (MWCNTs) and Fe3O4-MWCNTs composite on bioconversion of waste activated sludge to hydrogen, in batch systems. Substrate degradation efficiency (SDE) increased from 28 ± 3.8 (control) to 49 ± 5.9, 46 ± 4.8 and 52 ± 6.3% at optimal doses of 200 (Fe3O4 NPs), 300 (MWCNTs) and 200 mg/L (Fe3O4-MWCNTs), respectively. Based on dissolved iron and sludge conductivity measurements, superior SDE in Fe3O4 and MWCNTs batches have been assigned to enhanced dissimilatory iron reduction (DIR) and high sludge conductivity, respectively. Combined impacts for sludge conductivity and DIR were revealed in Fe3O4-MWCNTs system. In 200 mg/L (Fe3O4-MWCNTs) batch, catalytic activities of hydrogenase, protease and α-amylase peaked to 596, 146 and 131% (relative to control), respectively; as well as, highest volumetric H2 production of 607 ± 59 mL/L was acquired. Performance deteriorations at high concentrations of nanoparticles were caused by cellular oxidative stress induced by generated reactive oxygen species.

14.
Microorganisms ; 8(3)2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32120882

RESUMO

This study investigated the impact of stimulating direct interspecies electron transfer (DIET), by supplementing nano-sized magnetite (nFe3O4, 0.5 g Fe/g VSS) and carbon nanotubes (CNT, 1 g/L), in anaerobic digestion of oleic acid (OA) at various concentrations (0.10 - 4.00 g chemical oxygen demand(COD)/L). Both supplementations could enhance CH4 production, and its beneficial impact increased with increased OA concentration. The biggest improvements of 114% and 165% compared to the control were achieved by nFe3O4 and CNT, respectively, at OA of 4 g COD/L. The enhancement can be attributed to the increased sludge conductivity: 7.1 ± 0.5 (control), 12.5 ± 0.8 (nFe3O4-added), and 15.7 ± 1.1 µS/cm (CNT-supplemented). Dissolved iron concentration, released from nFe3O4, seemed to have a negligible role in improving CH4 production. The excretion of electron shuttles, i.e., humic-like substances and protein-like substances, were found to be stimulated by supplementing nFe3O4 and CNT. Microbial diversity was found to be simplified under DIET-stimulating conditions, whereby five genera accounted for 88% of the total sequences in the control, while more than 82% were represented by only two genera (Methanotrix concilli and Methanosarcina flavescens) by supplementing nFe3O4 and CNT. In addition, the abudance of electro-active bacteria such as Syntrophomonas zehnderi was significantly increased from 17% to around 45%.

15.
J Environ Manage ; 242: 384-393, 2019 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-31059951

RESUMO

The sole, dual and multi-fermentations of fruit and vegetable peels (FVPs) were investigated in order to balance nutrition hierarchy for maximizing hydrogen potential via Batch experiments. The highest volumetric hydrogen production of 2.55 ± 0.07 L/L and hydrogen content of 64.7 ± 3.7% were registered for multi-fermentation of M-PTBO (25% pea +25% tomato + 25% banana +25% orange). These values outperformed sole and dual fermentation. The multi-fermentation of FVPs provided sufficient nutrients and trace elements for anaerobes, where C/N and C/P ratios were at levels of 24.7 ± 0.2 and 113.2 ± 9.4, respectively. In specific, harmonizing of macro and micro-nutrients remarkably maximized activities of amylase, protease and lipase to 4.23 ± 0.42, 0.035 ± 0.002 and 0.31 ± 0.02 U/mL, respectively, as well as, substantially incremented counts of Clostridium and Enterobacter sp. up to 5.81 ±â€¯0.23 × 105 and 2.17 ±â€¯0.09 × 106 cfu/mL, respectively. Furthermore, multi-fermentation of M-PTBO achieved the maximum net energy gain and profit of 1.82 kJ/gfeedstock and 4.11 $/kgfeedstock, respectively. Nutrients balance significantly develops bacterial activity in terms of hydrogen productivity, anaerobes reproduction, enzyme activities and soluble metabolites. As a result, overall fermentation bioprocess performance was improved.


Assuntos
Frutas , Verduras , Fermentação , Hidrogênio , Nutrientes
16.
Environ Sci Pollut Res Int ; 26(10): 10429-10438, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30811023

RESUMO

The aim of this study is to assess an innovative economic approach for the production of both fermentative hydrogen and biochar from fruit and vegetable peels (FVPs) via fermentation/pyrolysis process. Firstly, in fermentation batches, multi-fermentation of FVPs positively affected the harvested hydrogen yield and COD reduction efficiency, which reached their maximal values of 3.9 ± 0.6 mmol/gCOD and 56.2 ± 4.6% at batch of 25% pea + 25% tomato + 25% banana + 25% orange (M4). Secondly, digestates produced from all batches were pyrolyzed at 500 °C for investigating the potential for biochar production. Based on the characteristics of the pyrolyzed digestate, biochar produced from S1 (spinach) exhibited the highest specific surface area, density, pore volume, biochar production yield, and pyrolysis profit of 28.43 ± 3.95 m2/g, 1.93 ± 0.18 g/cm3, 0.59 ± 0.08 cm3/g, 59.04 ± 2.36%, and 3.66 $/kgfeedstock, respectively. However, the maximum overall profit from both fermentation and pyrolysis processes was 5.21 $/kgfeedstock and was denoted for M4.


Assuntos
Fermentação , Alimentos , Eliminação de Resíduos/métodos , Resíduos , Carvão Vegetal , Frutas , Hidrogênio , Pirólise , Verduras
17.
Water Res ; 152: 234-240, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30677634

RESUMO

In addition to undesirable odorous gases, substantial amounts of greenhouse gases (GHG), particularly methane (CH4), are generated during the storage of livestock manure. To reduce the CH4 emissions, first, pig slurry (PS) was stored for 40 d at 30 °C after adjusting the pH at 5.0-7.0 using H2SO4 solution. In the control (non-acidified PS), 3.7 kg CO2 eq./ton PS of CH4 emissions was detected, which was reduced to 1.8, 0.9, 0.4, 0.2, and 0.1 kg CO2 eq./ton PS at pH 7.0, 6.5, 6.0, 5.5, and 5.0, respectively. Methanosarcina was found to be the dominant genus (67% of the total archaeal sequence) in the control, whose dominance was reduced as storage pH decreased. The results of ribonucleic acid analysis and specific methanogenic activity test further confirmed the inhibition of indigenous methanogens by acidification. Later, the biochemical CH4 potential of stored PS was tested. Compared to the control (10.6 L CH4/L PS), the acidified PS showed higher CH4 yields of 12.7-14.6 L CH4/L PS, presumably by keeping degradable organic matters in PS under acidic condition. Among different acidification pHs tested, the maximum amount of GHG reduction was achieved at pH 6.0 by reducing CH4 emission to +0.4 kg CO2 eq./ton PS during storage while increasing biogas production potential equivalent to 48.3 kWh/ton PS (-22.5 kg CO2 eq./ton PS), resulting in a further reduction of (-)9.6 kg CO2 eq./ton PS compared to the control.


Assuntos
Gases de Efeito Estufa , Metano , Animais , Biocombustíveis , Dióxido de Carbono , Concentração de Íons de Hidrogênio , Esterco , Suínos
18.
Bioresour Technol ; 231: 9-18, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28189089

RESUMO

The effect of cultural growth treating gelatinaceous wastewater on hydrogen fermentative was assessed using up-flow multi-stage anaerobic sponge reactor (UMASR) and anaerobic sequencing batch reactor (AnSBR). Both reactors were operated at five hydraulic retention times (HRTs). UMASR achieved the maximum COD removal efficiency of 60.2±4.4% at HRT of 48h. Moreover, UMASR exhibited superiority in the course of carbohydrates and proteins removal efficiencies' of 100 and 52.5±2.4% due to high amylase and protease activities' of 4.1±0.3 and 0.032±0.002U, respectively. Contrariwise, AnSBR assigned for the peak hydrogen production rate of 1.17±0.14L/L/day at HRT of 24-h. Lipase activity was quite high (0.307±0.023U) in AnSBR resulting in removal efficiency of 35.2±2.1% for lipids. Stover-Kincannon model emphasized that UMASR required lesser volume than AnSBR to sustain the same substrate degradation efficacy. Nevertheless, the net gain energy harvested from AnSBR surpassed UMASR by 4.0-folds at HRT of 24-h.


Assuntos
Bactérias Anaeróbias/crescimento & desenvolvimento , Hidrogênio/metabolismo , Águas Residuárias/microbiologia , Anaerobiose , Técnicas de Cultura Celular por Lotes , Biodegradação Ambiental , Biomassa , Reatores Biológicos/microbiologia , Carboidratos/isolamento & purificação , Ácidos Graxos Voláteis/análise , Fermentação , Concentração de Íons de Hidrogênio , Cinética , Lipídeos/isolamento & purificação , Metaboloma , Modelos Teóricos , Proteínas/isolamento & purificação , Fatores de Tempo
19.
Bioresour Technol ; 216: 520-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27268437

RESUMO

The effect of substrate to inoculum (So/Xo) ratio and supplementation of magnetite/graphene oxide (MGO) nano-composite material on hydrogen production from gelatinaceous wastewater via dark fermentation process was investigated. Results demonstrated that optimum So/Xo ratio of 1.0gCOD/gVSS achieved maximal hydrogen yield (HY) of 79.2±11.9mL H2/gCOD removed. Supplementation of anaerobes with 100mg/L MGO promoted HY up to 112.4±10.5mL H2/gCOD removed. Moreover, the degradation efficiency of carbohydrates, proteins and lipids was improved to 80.8±7.6, 34.4±2.3 and 31.4±2.2%, respectively. Acetate (HAc) and butyrate (HBu) concentrations increased from 102±6.8 to 125.3±6.3 and from 31.1±1.5 to 48.8±3.5mg/gVSS, respectively. However, propionate (HPr) concentration dropped from 35.9±2.7 to 15±1.3mg/gVSS. Hydrogenase enzyme activity increased 9-folds and the anaerobes elongated from ca. 1.8-2.9 to ca. 2.5-5.1µm with MGO addition. Moreover, Proteobacteria, Firmicutes, Clostridia and Bacilli were detected with the batches supplemented with MGO.


Assuntos
Biocombustíveis , Óxido Ferroso-Férrico/química , Grafite/química , Hidrogênio/metabolismo , Nanocompostos/química , Águas Residuárias/química , Acetatos/metabolismo , Bactérias Anaeróbias/genética , Bactérias Anaeróbias/metabolismo , Análise da Demanda Biológica de Oxigênio , Butiratos/metabolismo , Metabolismo dos Carboidratos , Fermentação , Óxido Ferroso-Férrico/metabolismo , Grafite/metabolismo , Metabolismo dos Lipídeos , Consórcios Microbianos/genética , Consórcios Microbianos/fisiologia , Óxidos/química , Óxidos/metabolismo , Proteínas/metabolismo , Eliminação de Resíduos Líquidos/instrumentação , Eliminação de Resíduos Líquidos/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...